THE RIESZ CAPACITY IN VARIABLE EXPONENT LEBESGUE SPACES
نویسندگان
چکیده
منابع مشابه
Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗
We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.
متن کاملThe Sampling Theorem in Variable Lebesgue Spaces
hold. The facts above are well-known as the classical Shannon sampling theorem initially proved by Ogura [10]. Ashino and Mandai [1] generalized the sampling theorem in Lebesgue spaces L0(R) for 1 < p0 < ∞. Their generalized sampling theorem is the following. Theorem 1.1 ([1]). Let r > 0 and 1 < p0 < ∞. Then for all f ∈ L 0(R) with supp f̂ ⊂ [−rπ, rπ], we have the norm inequality C p r ‖f‖Lp0(Rn...
متن کاملInterpolation in Variable Exponent Spaces
In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.
متن کاملContinuous wavelet transform in variable Lebesgue spaces
In the present note we investigate norm and almost everywhere convergence of the inverse continuous wavelet transform in the variable Lebesgue space. Mathematics Subject Classification (2010): Primary 42C40, Secondary 42C15, 42B08, 42A38, 46B15.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Apllied Mathematics
سال: 2017
ISSN: 1311-1728,1314-8060
DOI: 10.12732/ijam.v30i2.7